3.630 \(\int \frac{(d+e x)^4}{(a+b (d+e x)^2+c (d+e x)^4)^3} \, dx\)

Optimal. Leaf size=341 \[ \frac{(d+e x) \left (2 a+b (d+e x)^2\right )}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac{(d+e x) \left (-4 a c+7 b^2+12 b c (d+e x)^2\right )}{8 e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{3 \sqrt{c} \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} e \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{3 \sqrt{c} \left (2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{4 \sqrt{2} e \left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}} \]

[Out]

((d + e*x)*(2*a + b*(d + e*x)^2))/(4*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) - ((d + e*x)*(7*b^
2 - 4*a*c + 12*b*c*(d + e*x)^2))/(8*(b^2 - 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + (3*Sqrt[c]*(3*b^2
 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*
(b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) - (3*Sqrt[c]*(3*b^2 + 4*a*c + 2*b*Sqrt[b^2 - 4*a*c])*ArcTan
[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*(b^2 - 4*a*c)^(5/2)*Sqrt[b + Sqrt[b^2 -
4*a*c]]*e)

________________________________________________________________________________________

Rubi [A]  time = 0.950579, antiderivative size = 341, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {1142, 1120, 1178, 1166, 205} \[ \frac{(d+e x) \left (2 a+b (d+e x)^2\right )}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac{(d+e x) \left (-4 a c+7 b^2+12 b c (d+e x)^2\right )}{8 e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{3 \sqrt{c} \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} e \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{3 \sqrt{c} \left (2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{4 \sqrt{2} e \left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

((d + e*x)*(2*a + b*(d + e*x)^2))/(4*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) - ((d + e*x)*(7*b^
2 - 4*a*c + 12*b*c*(d + e*x)^2))/(8*(b^2 - 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + (3*Sqrt[c]*(3*b^2
 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*
(b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) - (3*Sqrt[c]*(3*b^2 + 4*a*c + 2*b*Sqrt[b^2 - 4*a*c])*ArcTan
[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*(b^2 - 4*a*c)^(5/2)*Sqrt[b + Sqrt[b^2 -
4*a*c]]*e)

Rule 1142

Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m),
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]

Rule 1120

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> -Simp[(d^3*(d*x)^(m - 3)*(2*a +
 b*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*(p + 1)*(b^2 - 4*a*c)), x] + Dist[d^4/(2*(p + 1)*(b^2 - 4*a*c)), Int[(
d*x)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (a+b x^2+c x^4\right )^3} \, dx,x,d+e x\right )}{e}\\ &=\frac{(d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac{\operatorname{Subst}\left (\int \frac{2 a-5 b x^2}{\left (a+b x^2+c x^4\right )^2} \, dx,x,d+e x\right )}{4 \left (b^2-4 a c\right ) e}\\ &=\frac{(d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac{(d+e x) \left (7 b^2-4 a c+12 b c (d+e x)^2\right )}{8 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\operatorname{Subst}\left (\int \frac{3 a \left (b^2+4 a c\right )-12 a b c x^2}{a+b x^2+c x^4} \, dx,x,d+e x\right )}{8 a \left (b^2-4 a c\right )^2 e}\\ &=\frac{(d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac{(d+e x) \left (7 b^2-4 a c+12 b c (d+e x)^2\right )}{8 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\left (3 c \left (3 b^2+4 a c-2 b \sqrt{b^2-4 a c}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{8 \left (b^2-4 a c\right )^{5/2} e}-\frac{\left (3 c \left (3 b^2+4 a c+2 b \sqrt{b^2-4 a c}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{8 \left (b^2-4 a c\right )^{5/2} e}\\ &=\frac{(d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac{(d+e x) \left (7 b^2-4 a c+12 b c (d+e x)^2\right )}{8 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{3 \sqrt{c} \left (3 b^2+4 a c-2 b \sqrt{b^2-4 a c}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}} e}-\frac{3 \sqrt{c} \left (3 b^2+4 a c+2 b \sqrt{b^2-4 a c}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} \left (b^2-4 a c\right )^{5/2} \sqrt{b+\sqrt{b^2-4 a c}} e}\\ \end{align*}

Mathematica [A]  time = 4.78153, size = 328, normalized size = 0.96 \[ \frac{\frac{(d+e x) \left (4 a c-7 b^2-12 b c (d+e x)^2\right )}{\left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{2 \left (-2 a (d+e x)-b (d+e x)^3\right )}{\left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{3 \sqrt{2} \sqrt{c} \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{3 \sqrt{2} \sqrt{c} \left (2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}}}{8 e} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

((-2*(-2*a*(d + e*x) - b*(d + e*x)^3))/((b^2 - 4*a*c)*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) + ((d + e*x)*(-7*
b^2 + 4*a*c - 12*b*c*(d + e*x)^2))/((b^2 - 4*a*c)^2*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + (3*Sqrt[2]*Sqrt[c]*
(3*b^2 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/((b^2
 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (3*Sqrt[2]*Sqrt[c]*(3*b^2 + 4*a*c + 2*b*Sqrt[b^2 - 4*a*c])*ArcT
an[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(5/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])
)/(8*e)

________________________________________________________________________________________

Maple [C]  time = 0.042, size = 704, normalized size = 2.1 \begin{align*}{\frac{1}{ \left ( c{e}^{4}{x}^{4}+4\,cd{e}^{3}{x}^{3}+6\,c{d}^{2}{e}^{2}{x}^{2}+4\,c{d}^{3}ex+b{e}^{2}{x}^{2}+c{d}^{4}+2\,bdex+b{d}^{2}+a \right ) ^{2}} \left ( -{\frac{3\,{c}^{2}{e}^{6}b{x}^{7}}{32\,{a}^{2}{c}^{2}-16\,a{b}^{2}c+2\,{b}^{4}}}-{\frac{21\,{c}^{2}d{e}^{5}b{x}^{6}}{32\,{a}^{2}{c}^{2}-16\,a{b}^{2}c+2\,{b}^{4}}}+{\frac{ \left ( -252\,c{d}^{2}b+4\,ac-19\,{b}^{2} \right ) c{e}^{4}{x}^{5}}{128\,{a}^{2}{c}^{2}-64\,a{b}^{2}c+8\,{b}^{4}}}+{\frac{5\,cd{e}^{3} \left ( -84\,c{d}^{2}b+4\,ac-19\,{b}^{2} \right ){x}^{4}}{128\,{a}^{2}{c}^{2}-64\,a{b}^{2}c+8\,{b}^{4}}}-{\frac{{e}^{2} \left ( 420\,b{c}^{2}{d}^{4}-40\,a{c}^{2}{d}^{2}+190\,{b}^{2}c{d}^{2}+16\,abc+5\,{b}^{3} \right ){x}^{3}}{128\,{a}^{2}{c}^{2}-64\,a{b}^{2}c+8\,{b}^{4}}}-{\frac{de \left ( 252\,b{c}^{2}{d}^{4}-40\,a{c}^{2}{d}^{2}+190\,{b}^{2}c{d}^{2}+48\,abc+15\,{b}^{3} \right ){x}^{2}}{128\,{a}^{2}{c}^{2}-64\,a{b}^{2}c+8\,{b}^{4}}}-{\frac{ \left ( 84\,b{c}^{2}{d}^{6}-20\,a{c}^{2}{d}^{4}+95\,{b}^{2}c{d}^{4}+48\,abc{d}^{2}+15\,{b}^{3}{d}^{2}+12\,{a}^{2}c+3\,a{b}^{2} \right ) x}{128\,{a}^{2}{c}^{2}-64\,a{b}^{2}c+8\,{b}^{4}}}-{\frac{d \left ( 12\,b{c}^{2}{d}^{6}-4\,a{c}^{2}{d}^{4}+19\,{b}^{2}c{d}^{4}+16\,abc{d}^{2}+5\,{b}^{3}{d}^{2}+12\,{a}^{2}c+3\,a{b}^{2} \right ) }{8\, \left ( 16\,{a}^{2}{c}^{2}-8\,a{b}^{2}c+{b}^{4} \right ) e}} \right ) }+{\frac{3}{ \left ( 256\,{a}^{2}{c}^{2}-128\,a{b}^{2}c+16\,{b}^{4} \right ) e}\sum _{{\it \_R}={\it RootOf} \left ( c{e}^{4}{{\it \_Z}}^{4}+4\,cd{e}^{3}{{\it \_Z}}^{3}+ \left ( 6\,c{d}^{2}{e}^{2}+b{e}^{2} \right ){{\it \_Z}}^{2}+ \left ( 4\,c{d}^{3}e+2\,bde \right ){\it \_Z}+c{d}^{4}+b{d}^{2}+a \right ) }{\frac{ \left ( -4\,{{\it \_R}}^{2}bc{e}^{2}-8\,{\it \_R}\,bcde-4\,c{d}^{2}b+4\,ac+{b}^{2} \right ) \ln \left ( x-{\it \_R} \right ) }{2\,c{e}^{3}{{\it \_R}}^{3}+6\,cd{e}^{2}{{\it \_R}}^{2}+6\,c{d}^{2}e{\it \_R}+2\,c{d}^{3}+be{\it \_R}+bd}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x)

[Out]

(-3/2*c^2*e^6*b/(16*a^2*c^2-8*a*b^2*c+b^4)*x^7-21/2*c^2*d*e^5*b/(16*a^2*c^2-8*a*b^2*c+b^4)*x^6+1/8*(-252*b*c*d
^2+4*a*c-19*b^2)*c*e^4/(16*a^2*c^2-8*a*b^2*c+b^4)*x^5+5/8*c*d*e^3*(-84*b*c*d^2+4*a*c-19*b^2)/(16*a^2*c^2-8*a*b
^2*c+b^4)*x^4-1/8*e^2*(420*b*c^2*d^4-40*a*c^2*d^2+190*b^2*c*d^2+16*a*b*c+5*b^3)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3
-1/8*d*e*(252*b*c^2*d^4-40*a*c^2*d^2+190*b^2*c*d^2+48*a*b*c+15*b^3)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2-1/8*(84*b*c
^2*d^6-20*a*c^2*d^4+95*b^2*c*d^4+48*a*b*c*d^2+15*b^3*d^2+12*a^2*c+3*a*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x-1/8*d/
e*(12*b*c^2*d^6-4*a*c^2*d^4+19*b^2*c*d^4+16*a*b*c*d^2+5*b^3*d^2+12*a^2*c+3*a*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4))/
(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2+3/16/(16*a^2*c^2-8*a
*b^2*c+b^4)/e*sum((-4*_R^2*b*c*e^2-8*_R*b*c*d*e-4*b*c*d^2+4*a*c+b^2)/(2*_R^3*c*e^3+6*_R^2*c*d*e^2+6*_R*c*d^2*e
+2*c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e^3*_Z^3+(6*c*d^2*e^2+b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)
*_Z+c*d^4+b*d^2+a))

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 3.93006, size = 14348, normalized size = 42.08 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="fricas")

[Out]

-1/16*(24*b*c^2*e^7*x^7 + 168*b*c^2*d*e^6*x^6 + 2*(252*b*c^2*d^2 + 19*b^2*c - 4*a*c^2)*e^5*x^5 + 24*b*c^2*d^7
+ 10*(84*b*c^2*d^3 + (19*b^2*c - 4*a*c^2)*d)*e^4*x^4 + 2*(420*b*c^2*d^4 + 5*b^3 + 16*a*b*c + 10*(19*b^2*c - 4*
a*c^2)*d^2)*e^3*x^3 + 2*(19*b^2*c - 4*a*c^2)*d^5 + 2*(252*b*c^2*d^5 + 10*(19*b^2*c - 4*a*c^2)*d^3 + 3*(5*b^3 +
 16*a*b*c)*d)*e^2*x^2 + 2*(5*b^3 + 16*a*b*c)*d^3 + 2*(84*b*c^2*d^6 + 5*(19*b^2*c - 4*a*c^2)*d^4 + 3*a*b^2 + 12
*a^2*c + 3*(5*b^3 + 16*a*b*c)*d^2)*e*x - 3*sqrt(1/2)*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*e^9*x^8 + 8*(b^4*c^
2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d*e^8*x^7 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3 + 14*(b^4*c^2 - 8*a*b^2*c^3 +
16*a^2*c^4)*d^2)*e^7*x^6 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^3 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*
c^3)*d)*e^6*x^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3 + 70*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^4 + 30*(b^5*c - 8*
a*b^3*c^2 + 16*a^2*b*c^3)*d^2)*e^5*x^4 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^5 + 10*(b^5*c - 8*a*b^3*
c^2 + 16*a^2*b*c^3)*d^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d)*e^4*x^3 + 2*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^
4)*d^6 + a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^4 + 3*(b^6 - 6*a*b^4*c
 + 32*a^3*c^3)*d^2)*e^3*x^2 + 4*(2*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^7 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*
b*c^3)*d^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^3 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d)*e^2*x + ((b^4*c^2 -
8*a*b^2*c^3 + 16*a^2*c^4)*d^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^
2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d^2)*e)*sqrt(-(b^5 + 40*a*b^3*
c + 80*a^2*b*c^2 + (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^
5)*e^2*sqrt(1/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)
*e^4)))/((a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2))*l
og(3*(5*b^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)*e*x + 3*(5*b^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)*d + 3/2*sqrt(1/2)*((a
*b^13 - 8*a^2*b^11*c - 80*a^3*b^9*c^2 + 1280*a^4*b^7*c^3 - 6400*a^5*b^5*c^4 + 14336*a^6*b^3*c^5 - 12288*a^7*b*
c^6)*e^3*sqrt(1/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^
5)*e^4)) - (b^8 - 8*a*b^6*c + 128*a^3*b^2*c^3 - 256*a^4*c^4)*e)*sqrt(-(b^5 + 40*a*b^3*c + 80*a^2*b*c^2 + (a*b^
10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2*sqrt(1/((a^2*b^10
 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4)))/((a*b^10 - 20*a^
2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2))) + 3*sqrt(1/2)*((b^4*c^2
- 8*a*b^2*c^3 + 16*a^2*c^4)*e^9*x^8 + 8*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d*e^8*x^7 + 2*(b^5*c - 8*a*b^3*c^
2 + 16*a^2*b*c^3 + 14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^2)*e^7*x^6 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^
2*c^4)*d^3 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d)*e^6*x^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3 + 70*(b^4*c^2 -
 8*a*b^2*c^3 + 16*a^2*c^4)*d^4 + 30*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^2)*e^5*x^4 + 4*(14*(b^4*c^2 - 8*a*b
^2*c^3 + 16*a^2*c^4)*d^5 + 10*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d)*e^4
*x^3 + 2*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^6 + a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b
^3*c^2 + 16*a^2*b*c^3)*d^4 + 3*(b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^2)*e^3*x^2 + 4*(2*(b^4*c^2 - 8*a*b^2*c^3 + 16*
a^2*c^4)*d^7 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^3 + (a*b^5 - 8*a^
2*b^3*c + 16*a^3*b*c^2)*d)*e^2*x + ((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2
*b*c^3)*d^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^4 + 2*(a*b^5 - 8*a^2*b^3*c
 + 16*a^3*b*c^2)*d^2)*e)*sqrt(-(b^5 + 40*a*b^3*c + 80*a^2*b*c^2 + (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 6
40*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2*sqrt(1/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640
*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4)))/((a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4
*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2))*log(3*(5*b^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)*e*x + 3*(5*b^4*c + 4
0*a*b^2*c^2 + 16*a^2*c^3)*d - 3/2*sqrt(1/2)*((a*b^13 - 8*a^2*b^11*c - 80*a^3*b^9*c^2 + 1280*a^4*b^7*c^3 - 6400
*a^5*b^5*c^4 + 14336*a^6*b^3*c^5 - 12288*a^7*b*c^6)*e^3*sqrt(1/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 6
40*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4)) - (b^8 - 8*a*b^6*c + 128*a^3*b^2*c^3 - 256*a^4*c^4)*e)
*sqrt(-(b^5 + 40*a*b^3*c + 80*a^2*b*c^2 + (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^
5*b^2*c^4 - 1024*a^6*c^5)*e^2*sqrt(1/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*
b^2*c^4 - 1024*a^7*c^5)*e^4)))/((a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4
- 1024*a^6*c^5)*e^2))) + 3*sqrt(1/2)*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*e^9*x^8 + 8*(b^4*c^2 - 8*a*b^2*c^3
+ 16*a^2*c^4)*d*e^8*x^7 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3 + 14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^2)
*e^7*x^6 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^3 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d)*e^6*x^5
+ (b^6 - 6*a*b^4*c + 32*a^3*c^3 + 70*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^4 + 30*(b^5*c - 8*a*b^3*c^2 + 16*a
^2*b*c^3)*d^2)*e^5*x^4 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^5 + 10*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c
^3)*d^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d)*e^4*x^3 + 2*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^6 + a*b^5 -
 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^4 + 3*(b^6 - 6*a*b^4*c + 32*a^3*c^3)*d
^2)*e^3*x^2 + 4*(2*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^7 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^5 + (b^
6 - 6*a*b^4*c + 32*a^3*c^3)*d^3 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d)*e^2*x + ((b^4*c^2 - 8*a*b^2*c^3 + 16
*a^2*c^4)*d^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b
^4*c + 32*a^3*c^3)*d^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d^2)*e)*sqrt(-(b^5 + 40*a*b^3*c + 80*a^2*b*c^2
 - (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2*sqrt(1/((
a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4)))/((a*b^10
 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2))*log(3*(5*b^4*c +
40*a*b^2*c^2 + 16*a^2*c^3)*e*x + 3*(5*b^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)*d + 3/2*sqrt(1/2)*((a*b^13 - 8*a^2*b^
11*c - 80*a^3*b^9*c^2 + 1280*a^4*b^7*c^3 - 6400*a^5*b^5*c^4 + 14336*a^6*b^3*c^5 - 12288*a^7*b*c^6)*e^3*sqrt(1/
((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4)) + (b^8
- 8*a*b^6*c + 128*a^3*b^2*c^3 - 256*a^4*c^4)*e)*sqrt(-(b^5 + 40*a*b^3*c + 80*a^2*b*c^2 - (a*b^10 - 20*a^2*b^8*
c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2*sqrt(1/((a^2*b^10 - 20*a^3*b^8*c
+ 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4)))/((a*b^10 - 20*a^2*b^8*c + 160*a^
3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2))) - 3*sqrt(1/2)*((b^4*c^2 - 8*a*b^2*c^3 +
16*a^2*c^4)*e^9*x^8 + 8*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d*e^8*x^7 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3
 + 14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^2)*e^7*x^6 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^3 + 3*(
b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d)*e^6*x^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3 + 70*(b^4*c^2 - 8*a*b^2*c^3 + 1
6*a^2*c^4)*d^4 + 30*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^2)*e^5*x^4 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*
c^4)*d^5 + 10*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d)*e^4*x^3 + 2*(14*(b^
4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^6 + a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*
b*c^3)*d^4 + 3*(b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^2)*e^3*x^2 + 4*(2*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^7 + 3
*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^3 + (a*b^5 - 8*a^2*b^3*c + 16*a^3
*b*c^2)*d)*e^2*x + ((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^6 + a^
2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)
*d^2)*e)*sqrt(-(b^5 + 40*a*b^3*c + 80*a^2*b*c^2 - (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 +
 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2*sqrt(1/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1
280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4)))/((a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*
b^2*c^4 - 1024*a^6*c^5)*e^2))*log(3*(5*b^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)*e*x + 3*(5*b^4*c + 40*a*b^2*c^2 + 16
*a^2*c^3)*d - 3/2*sqrt(1/2)*((a*b^13 - 8*a^2*b^11*c - 80*a^3*b^9*c^2 + 1280*a^4*b^7*c^3 - 6400*a^5*b^5*c^4 + 1
4336*a^6*b^3*c^5 - 12288*a^7*b*c^6)*e^3*sqrt(1/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 +
 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4)) + (b^8 - 8*a*b^6*c + 128*a^3*b^2*c^3 - 256*a^4*c^4)*e)*sqrt(-(b^5 + 40
*a*b^3*c + 80*a^2*b*c^2 - (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024
*a^6*c^5)*e^2*sqrt(1/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a
^7*c^5)*e^4)))/((a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*
e^2))) + 6*(a*b^2 + 4*a^2*c)*d)/((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*e^9*x^8 + 8*(b^4*c^2 - 8*a*b^2*c^3 + 16*
a^2*c^4)*d*e^8*x^7 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3 + 14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^2)*e^7*
x^6 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^3 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d)*e^6*x^5 + (b^
6 - 6*a*b^4*c + 32*a^3*c^3 + 70*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^4 + 30*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*
c^3)*d^2)*e^5*x^4 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^5 + 10*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d
^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d)*e^4*x^3 + 2*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^6 + a*b^5 - 8*a^
2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^4 + 3*(b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^2)*e
^3*x^2 + 4*(2*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^7 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^5 + (b^6 - 6
*a*b^4*c + 32*a^3*c^3)*d^3 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d)*e^2*x + ((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*
c^4)*d^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c
+ 32*a^3*c^3)*d^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d^2)*e)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**4/(a+b*(e*x+d)**2+c*(e*x+d)**4)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{4}}{{\left ({\left (e x + d\right )}^{4} c +{\left (e x + d\right )}^{2} b + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="giac")

[Out]

integrate((e*x + d)^4/((e*x + d)^4*c + (e*x + d)^2*b + a)^3, x)